Final results on $K^+ \to \pi^+ \nu \bar{\nu}$ from BNL E949 David E. Jaffe Physics Department # BROOKHAVEN NATIONAL LABORATORY David E. Jaffe (BNL) Final E949 results Sept 9-13, 2008 1 / 29 #### Sensitivity to New Physics The $K^+ \to \pi^+ \nu \bar{\nu}$ branching ratio can be precisely predicted in the SM (and most models) owing to knowledge of the transition ME from similar processes and minimal long-distance effects. In the SM, $\mathcal{B}(\mathrm{K}^+ \to \pi^+ \nu \bar{\nu}) = (0.85 \pm 0.07) \times 10^{-10}$ (arXiv:0805.4119). Ref: G.Isidori, arXiv:0801.3039, attributed to Frederico Mescia David E. Jaffe (BNL) Final E949 results Sept 9-13, 2008 2 / 29 #### Previous $K^+ \to \pi^+ \nu \bar{\nu}$ results | Region | "PNN2" | "PNN1" | |--|--------------------------------------|---| | $P(\pi^+)$ MeV/c | [140,195] | [211,229] | | Stopped K^+ | 1.7×10^{12} | 7.7×10^{12} | | Background events | 1.22 ± 0.24 | $\textbf{0.45} \pm \textbf{0.06}$ | | Candidate events | 1 | 3 | | $\mathcal{B}(\mathrm{K}^+ o \pi^+ u ar{ u})$ | $< 22 \times 10^{-10} \ (90\% \ CL)$ | $(1.47^{+1.30}_{-0.89}) imes 10^{-10}$ | | Reference | PRD 70 , 037102 (2004) | PRD 77 , 052003 (2008) | | | E707 | E7070, E040 | Rate vs. π^+ momentum in K^+ rest frame ## E949 experimental method - Measure everything possible - \sim 700 MeV/c K⁺ beam - Stop K⁺ in scint. fiber target - Wait at least 2 ns for K⁺ decay (delayed coincidence) - Measure π^+ momentum P in drift chamber - Measure π^+ range R and energy E in target and range stack (RS) - Stop π^+ in range stack - Observe $\pi^+ \to \mu^+ \to e^+$ in RS - Veto photons, charged tracks - New/upgraded detector elements compared to E787 #### The Secret of Finding Rare Decays - J.Mildenberger (& J.Hart) # E787 and E949 analysis strategy - A priori identification of background sources. - Suppress each background with at least two independent cuts. - It is difficult to simulate background at the 10⁻¹⁰ level, so measure background with data by inverting cuts and measuring rejection taking any correlation into account. - To avoid bias, set cuts using 1/3 of data, then measure backgrounds with remaining 2/3 sample. - Verify background estimates by loosening cuts and comparing observed and predicted rates. - "Blind analysis". Don't examine signal region until all backgrounds verified. ## Backgrounds in the pnn2 region | Process | Rate | |--|-----------------------------------| | $\mathrm{K}^+ \to \pi^+ \nu \bar{\nu}$ | 0.8×10^{-10} | | $\mathrm{K^+} ightarrow \pi^+ \pi^0$ | $2092000000.0 \times 10^{-10}$ | | $\mathrm{K^+} ightarrow \pi^+ \pi^0 \gamma$ | $2750000.0 \times 10^{-10}$ | | $\mathrm{K}^+ o \pi^+\pi^- e^+ \nu$ | 409000.0×10^{-10} | | $\mathrm{K}^+ \to \mu^+ \nu$ | $6344000000.0 \times 10^{-10}$ | | $\mathrm{K}^+ \to \mu^+ \nu \gamma$ | $62000000.0 \times 10^{-10}$ | | $\mathrm{K}^+ o \mu^+ \pi^0 \nu$ | $332000000.0 \times 10^{-10}$ | | CEX | $\sim 46000.0 imes 10^{-10}$ | | Scattered π^+ beam | $\sim 25000000.0 \times 10^{-10}$ | $\begin{array}{c} \text{Both certain } & \text{Beam \text{Beam$ $\mathrm{K}^+ n \to \mathrm{K}^0 X$ rate is empirically determined. 4□ > 4□ > 4□ > 4□ > 4□ > 9○ # Main pnn2 background: ${ m K}^+ o \pi^+ \pi^0$ -scatters The main background below the $K^+ \to \pi^+ \pi^0$ peak is due to $K_{\pi 2}$ decays where the π^+ scatters in the target losing energy simultaneously obscuring the correlation with the π^0 direction. ◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りへの 8 / 29 # Suppression of $K_{\pi 2}$ -scatter background - Photon veto of $\pi^0 \to \gamma \gamma$ Photon detection in beam region important - Identification of π^+ scattering in the target - kink in the pattern of target fibers - π^+ track that does not point back to the ${\rm K}^+$ decay point - energy deposits inconsistent with an outgoing π^+ - unexpected energy deposit in the fibers traversed by the K⁺ ### E949 scintillating fiber target 'Typical' pattern in target fibers for $K^+ \to \pi^+ \pi^0$ decay. # Identification of π^+ scattering Kink in pattern of target fibers Excess energy in kaon fibers ("CCDPUL") ## Suppression of $K_{\pi 2}$ scatter background Black: Photon-tagged sample Black: π^+ -scatter-tagged sample Blue: After target cuts (except CCDPUL) Red: After photon veto cuts Red: After all target cuts Sept 9-13, 2008 # Estimation of $K_{\pi 2}$ scattering background - $K_{\pi 2}$ scattering background is suppressed by PV and target cuts. - To estimate PV rejection, multiple π^+ scattering samples are prepared by inverting different combinations of target cuts. - The "normalization" sample is estimated by inverting the PV cut, but the sample is contaminated with $K_{\pi 2}$ scatters in the range stack (RS) and by $K^+ \to \pi^+ \pi^0 \gamma$. #### After disentangling the processes: | Process | Background events | |------------------------|-------------------------------------| | $K_{\pi 2}$ TG-scatter | $0.619 \pm 0.150^{+0.067}_{-0.100}$ | | $K_{\pi 2}$ RS-scatter | $0.030 \pm 0.005 \pm 0.004$ | | $K_{\pi 2 \gamma}$ | $0.076 \pm 0.007 \pm 0.006$ | ◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 ∽9<</p> # ${ m K}^+ ightarrow \pi^+\pi^-e^+ u$ (${\it K}_{\it e4}$) background ${ m K}^+ \to \pi^+\pi^-e^+\nu$ can be a background if the π^- and e^+ have very little kinetic energy and evade detection. Figure: π^+ momentum (P_π) vs. total kinetic energy of π^- and e^+ from simulated $K^+ \to \pi^+ \pi^- e^+ \nu$ decays. Signal region is $140 < P_\pi < 199 \; \mathrm{MeV}/c$ # ${ m K}^+ ightarrow \pi^+\pi^-e^+ u$ background Isolate K_{e4} sample using target pattern recognition, similar to $K_{\pi 2}$ scatter. Estimate rejection power of target pattern recognition with simulated data supplemented by measured π^- energy deposition spectrum in scintillator. Energy of stopped pi- (MeV) ### Total background and sensitivity | Process | Bkgd events (E949) | Bkgd events (E787) | |----------------------|-------------------------------------|--------------------| | $K_{\pi 2}$ -scatter | $0.649 \pm 0.150^{+0.067}_{-0.100}$ | 1.030 ± 0.230 | | $K_{\pi 2 \gamma}$ | $0.076 \pm 0.007 \pm 0.006$ | 0.033 ± 0.004 | | K_{e4} | $0.176 \pm 0.072^{+0.233}_{-0.124}$ | 0.052 ± 0.041 | | CEX | $0.013 \pm 0.013^{+0.010}_{-0.003}$ | 0.024 ± 0.017 | | Muon | 0.011 ± 0.011 | 0.016 ± 0.011 | | Beam | 0.001 ± 0.001 | 0.066 ± 0.045 | | Total bkgd | $0.93 \pm 0.17^{+0.32}_{-0.24}$ | 1.22 ± 0.24 | | | | | | | E949 pnn2 | E787 pnn2 | |------------------|-----------------------|-----------------------| | Total Kaons | | 1.73×10^{12} | | Total Acceptance | | 0.84×10^{-3} | | SES | 4.3×10^{-10} | 6.9×10^{-10} | The branching ratio that corresponds to one event in the absence of background is the Single-Event Sensitivity (SES). For the E787+E949 pnn1 analysis, SES = 0.63×10^{-10} . ## Verification of background estimates Relax PV and CCDPUL cuts to define 2 distinct regions PV_1 and CCD_1 immediately adjacent to the signal region. Define a third region PV_2 by further loosening of the PV cut. Compare the observed ($N_{\rm obs}$) with the expected number ($N_{\rm exp}$) of events in each region. $$\begin{array}{c|cccc} \mathsf{Region} & N_{\mathrm{exp}} & N_{\mathrm{obs}} \\ \mathit{CCD}_1 & 0.79^{+0.46}_{-0.51} & 0 \\ \mathit{PV}_1 & 9.09^{+1.53}_{-1.32} & 3 \\ \mathit{PV}_2 & 32.4^{+12.3}_{-8.1} & 34 \end{array}$$ The probability to observe \leq 3 events when $9.09^{+1.53}_{-1.32}$ are expected is 2%. The probability of the observation in regions CCD_1 and PV_1 given the expectation is 5%; the expectation is [2%,14%] when the uncertainty in $N_{\rm exp}$ is taken into account. ## Division of the signal region - The background is not uniformly distributed in the signal region. - Use the remaining rejection power of photon veto, delayed coincidence, $\pi \to \mu \to e$ and kinematic cuts to divide the signal region into 9 cells with differing levels of signal acceptance (S_i) and background (B_i) . - Calculate $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ using S_i/B_i of any cells containing events using the likelihood ratio method. ## Examining the signal region | The nine cells | | | | | |----------------|---------------|------|--|--| | Bkgd | Events | S/B | | | | 0.152 | 0 | 0.84 | | | | 0.038 | 0 | 0.78 | | | | 0.019 | 0 | 0.66 | | | | 0.005 | 0 | 0.57 | | | | 0.243 | 1 | 0.47 | | | | 0.059 | 0 | 0.45 | | | | 0.027 | 1 | 0.42 | | | | 0.007 | 0 | 0.35 | | | | 0.379 | 1 | 0.20 | | | No momentum cut applied. Solid line represents signal region, dashed line shows tightened kinematic cuts. Gray points are simulated $K^+ \to \pi^+ \nu \bar{\nu}$. David E. Jaffe (BNL) Final E949 results Sept 9-13, 2008 19 / 29 # Measured $\mathcal{B}(\mathrm{K}^+ o \pi^+ \nu \bar{\nu})$ for this analysis - $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.89^{+9.26}_{-5.10}) \times 10^{-10}$ - The probability of all 3 events to be due to background only is 0.037. - SM expectation: $\mathcal{B} = (0.85 \pm 0.07) \times 10^{-10}$ All cuts applied. # Measured $\mathcal{B}(\mathrm{K}^+ \to \pi^+ \nu \bar{\nu})$ for E949+E787 E787(dashed) and E949(solid) signal regions shown. All cuts applied. - $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$ - The probability of all 7 events to be due to background only is 0.001. - SM expectation: $\mathcal{B} = (0.85 \pm 0.07) \times 10^{-10}$ - Despite the size of the boxes in energy *vs.* range, the pnn1 analyses are 4.2 times more sensitive than the pnn2 analyses # What happens next? - In an ill-considered decision of the Executive Branch of the US Government, E949 was cancelled in 2002 after receiving only 20% of the approved beam time. - Experiment NA62 (formerly NA48/3) at CERN was approved in 2007 and is in preparation. - NA62 proposes to observe \approx 65 ${\rm K}^+ \to \pi^+ \nu \bar{\nu}$ per year with a background of \approx 10 events using a 75 GeV/c beam. The use of kaon decay-in-flight to measure ${\rm K}^+ \to \pi^+ \nu \bar{\nu}$ has not been attempted before. - There is a letter of intent for a stopped kaon decay experiment in Japan using the best parts of E949. - "A few % measurement of $K^+ \to \pi^+ \nu \bar{\nu}$ appears feasible at Fermilab Project X." D.Bryman David E. Jaffe (BNL) Final E949 results Sept 9-13, 2008 22 / 29 In 25 years of research with BNL E787 and E949, the search for $K^+ \to \pi^+ \nu \bar{\nu}$ decays went from a limit on the branching ratio of $< 1.4 \times 10^{-7} \ (90\% \text{CL})$ to a measurement of $(1.73^{+1.15}_{-1.05}) \times 10^{-10}$ (arXiv:0808.2459) that is twice as large as, but still consistent with, the Standard Model expectation of $(0.85 \pm 0.07) \times 10^{-10}$. The techniques, philosophy and results of E949 and E787 have s(h)own the way for experimental searches of rare decays. This page is blank David E. Jaffe (BNL) ## Backgrounds in high momentum (pnn1) region Mechanisms for the main backgrounds in the high momentum region $$\mathrm{K}^+ ightarrow \pi^+ \pi^0$$ (K $_{\pi 2}$) - 1 Mismeasurement of π^+ kinematics - 2 Undetected photons from $\pi^0 \to \gamma \gamma$ $$\mathrm{K}^+ ightarrow \mu^+ u$$ (K $_{\mu 2}$) - 1 Mismeasurement of μ^+ kinematics - 2 Misidentification of μ^+ as π^+ ### Estimation of background rates with data - Apply cut2 & invert cut1: Select B events - Invert cut2: Select C+D events & apply cut1: Select C events - Rejection of cut1 is R = (C+D)/C - Background estimate = B/(R-1) ### Example: Estimating ${ m K}^+ ightarrow \pi^+ \pi^0$ pnn1 background with data **Left:** Kinematically selected $K^+ \to \pi^+ \pi^0$ with photon veto applied. Photon veto: Typically 2-5 ns time windows and 0.2 - 3 MeV energy thresholds Right: Select photons. Phase space cuts in P, R, E. ### Photon veto in the beam region Active Degrader (AD) 14cm diameter, 17cm long, 12 azimuthal segments 6.1 radiation lengths # $K^+ \rightarrow \pi^+ \gamma \gamma$ is not a background Ref: E787, PRL 79, 4079 (1997). - Partial branching fraction for $140 < P_{\pi} < 200 \text{ MeV}/c$ is $\approx 1.1 \times 10^{-7}$. - Photon veto rejection of $\pi^0 \rightarrow \gamma \gamma$ is $> 10^6$. - Rate of $K^+ \to \pi^+ \gamma \gamma$ background is $< 1.1 \times 10^{-13}$ without considerations of π^+ acceptance. David E. Jaffe (BNL)